Characterization of degradation and iron deposits of the wood of Nanhai I shipwreck

Author:

Zhang Hongying,Shen Dawa,Zhang Zhiguo,Ma Qinglin

Abstract

AbstractNanhai I shipwreck was a large wooden merchant ship (22.15 m in length and 9.85 m in width) built in the Southern Song Dynasty (1127–1279 A.D.) of China, which was heavily loaded with a large number of porcelain and iron artifacts. In the South China Sea, it was found in 1987 and lifted as a whole in 2007. Its excavation provides a precious opportunity to reveal the preservation status of Nanhai I shipwreck. Iron compounds give rise to challenges in conservation procedures and the long-term stability of Nanhai I shipwreck. In this paper, the degradation of the wood and the iron deposits in the wood structure are investigated from the aspects of microscopic morphology, composition, and distribution to evaluate the preservation state of the waterlogged wood. Physical parameters, chemical composition, and the results of elemental analysis, and FTIR analysis suggest that the cellulose of wood is degraded, and the relative concentration of lignin increases. The ash content varies greatly among different samples, and the element of the highest content in ash is iron. The study on transverse and longitudinal sections from samples indicate that the deposits are unevenly concentrated in the cell lumen, middle lamella, rays, and pits of the cell wall. The cell lumen is filled with deposits in areas close to the surface of the samples. The XRD analysis demonstrates that the deposits in wood are mainly iron deposits, containing compounds pyrite (FeS2), siderite (FeCO3), iron oxyhydroxides (FeOOH), and magnetite (Fe3O4). The micro-X-ray Fluorescence mapping analysis suggests that the content of iron is relatively richer while containing less sulfur on the exterior of the sample. The presence of iron deposits accelerates wood degradation and increases the safety hazards of shipwrecks in the preservation process. We hope that our findings can make a modest contribution to iron removal from waterlogged archeological wood and shipwreck conservation.

Funder

China’s National Key R&D Program

Publisher

Springer Science and Business Media LLC

Subject

Archeology,Archeology,Conservation,Computer Science Applications,Materials Science (miscellaneous),Chemistry (miscellaneous),Spectroscopy

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3