Exploring elucidation of red dye mixtures on woolen historical textiles via non-destructive spectroscopic analysis and multivariate cluster analysis

Author:

Celani Caelin P.,Degano Ilaria,Chen Carolyn,Jaeger Olivia,Speed Amelia M.,Booksh Karl S.,Alcantara-Garcia Jocelyn

Abstract

AbstractOne of the foremost challenges facing analysis of historical textiles is that the gold standard technique—high performance liquid chromatography (HPLC)—is inherently destructive. This is especially problematic considering many historical textiles are exceptionally fragile, be it from age, poor care over time, etc. One proposed solution to this is the implementation of non-destructive, namely spectroscopic, techniques, such as diffuse reflectance (Fiber Optic Reflectance Spectroscopy, FORS). In this work, 204 well-provenanced red Norwich textiles were measured with FORS and analyzed to attempt to determine chromophore combinations used to dye the original textiles. To these ends, cluster analysis algorithms and spectroscopic domain knowledge were coupled with selective HPLC validation to assess overall ability of FORS to discern changes in chromophore combinations. It was found that the near infrared (NIR) region of the spectrum contained little meaningful information in multivariate space, while the VIS region, particularly 380–469 nm, showed a narrow visible region that was primarily responsible for clustering behavior that correlates with HPLC-validated samples. This indicates that FORS shows promise for discerning chromophores in textile swatches. Additionally, X-ray fluorescence (XRF) analysis was used to confirm that the observed FORS spectral inflection point shift in the 600 nm region did not correlate with the presence or type of mordant used when dying these textiles. From this work, three main conclusions can be drawn: (1) FORS adequately identifies visual infon, which shows reasonable correlation to HPLC-validated dye recipes, warranting further investigation, and indicating utility for cois or use for those with visual impairments; (2) XRF analysis confirms that the ~ 600 nm inflection point shift and mordant are not correlated when measuring dyed textiles, unless mordant is present below analytical detection limits or not present at all; (3) many documented structural-to-spectral relationships established in the conservation literature are too weak in dyed textiles for statistical analysis and, by extension, expert spectral identification.

Funder

National Science Foundation Directorate for Mathematical and Physical Sciences, United States

Publisher

Springer Science and Business Media LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3