Numerical modelling of mechanical degradation of canvas paintings under desiccation

Author:

Lee D. S.-H.,Kim N.-S.,Scharff M.,Nielsen A. V.,Mecklenburg M.,Fuster-López L.,Bratasz L.,Andersen C. K.

Abstract

AbstractMechanical damage in oil paintings on canvas show up as cracks and loss of original paint. Several parameters can contribute to this type of degradation. These paintings have a complex layered structure, typically composed of minimum four or more hygroscopic materials, each of which has different (non-linear) material properties and geometrical complexities. The mechanical degradation of canvas paintings occurs because each of these materials have diverse responses under fluctuating environmental conditions, especially temperature and relative humidity (RH). By examining the geometrical complexities and the non-linear material properties, this paper presents an investigation of three degradation phenomena under desiccation: (1) bulging formation around the corners, (2) crack formation in glue and ground layers, and (3) plastic deformation in the ground and oil paint layers.This on-going investigation provides further insights into the global and local stress distribution in typically constructed oil canvas paintings. This includes finite element method (FEM) and extended-FEM (XFEM) computer models at various scales, under desiccation from the initial RH of 90%, and 50–10%. The models consist of four to five different materials, namely lead white oil paint, red iron oxide oil paint, rabbit skin glue, linen canvas, and a spruce stretcher. The models were constructed using several combinations of materials to conduct parametric studies on the effects of glue shrinkage in paintings due to desiccation, and changing the mechanical properties of the ground layers. The relevant geometrical and mechanical properties with respect to the stress relaxation conditions are discussed in detail.The simulation results of the full-scale models show that the shrinkage of glue lowers the level of induced tension stresses in the paint layers in the central area of the painting due to the inward bowing of the stretcher. The inward deformation of the stretcher can be 4.5 times as large in a painting with a glue layer as in one without. This indicates the difficulty in forming cracks near the center of paintings purely by desiccation; however, in close-up cross-section model, cracks of 20 μm in length could still be observed in the ground exposed to an extreme RH change of 90% to 10%.The analysis of cross-section models with the full geometrical complexity for the corners showed that multiple cracks are likely to form in ground and paint layers in the corners when desiccated by 40%; RH 50–10%. Furthermore, in extreme cases with stiffer ground/paint such as zinc white, cracks can form from smaller drop in RH; RH 50% to 35%. Such cracks are form in the ground layers, and therefore, are not initially visible as they are positioned below the uncracked paint layer. This result can be the possible explanation for cracks in the ground, which are initially invisible with the naked eye, but can be revealed with X-radiographs.The results support the hypothesis that fluctuations in relative humidity can cause hidden cracks in the lower layers, which can eventually propagate further into the upper-lying paint layers of paintings. The cracks typically form when the desiccation reaches a 40% drop, but in cases of brittle materials the drop causing cracks can be lower. The actual RH drop causing cracks depends on the specific material composition.

Funder

European Union's Horizon 2020 research and innovation program

Narodowa Agencja Wymiany Akademickiej

Publisher

Springer Science and Business Media LLC

Subject

Archeology,Archeology,Conservation,Computer Science Applications,Materials Science (miscellaneous),Chemistry (miscellaneous),Spectroscopy

Reference33 articles.

1. Stout GL. A trial index of laminal disruption. J Am Inst Conserv. 1977;17(1):17–26.

2. Bucklow S. The description of craquelure patterns. Stud Conserv. 1997;42:129.

3. Roche A. Influence du type de chassis sur le vieillissement mecanique d’une peinture sur toile. Stud Conserv. 1993;38(1):17–24.

4. Padfield T, et al. Back protection of canvas paintings. Heritage Science. 2020;8(1):96.

5. Mecklenburg MF. Micro Climates and Moisture Induced Damage to Paintings. in Conference on Micro Climates in Museum. 2007. Copenhagen.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3