Tensor decomposition for painting analysis. Part 1: pigment characterization

Author:

Ciortan Irina M.ORCID,Poulsson Tina G.,George SonyORCID,Hardeberg Jon Y.ORCID

Abstract

AbstractPhoto-sensitive materials tend to change with exposure to light. Often, this change is visible when it affects the reflectance of the material in the visible range of the electromagnetic spectrum. In order to understand the photo-degradation mechanisms and their impact on fugitive materials, high-end scientific analysis is required. In a two-part article, we present a multi-modal approach to model fading effects in the spectral, temporal (first part) and spatial dimensions (second part). Specifically, we collect data from the same artwork, namely “A Japanese Lantern” by Norwegian artist, Oda Krohg, with two techniques, point-based microfading spectroscopy and hyperspectral imaging. In this first part, we focus on characterizing the pigments in the painting based on their spectral and fading characteristics. To begin with, using microfading data of a region in the painting, we analyze the color deterioration of the measured points. Then, we train a tensor decomposition model to reduce the measured materials to a spectral basis of unmixed pigments and, at the same time, to recover the fading rate of these endmembers (i.e. pure, unmixed chemical signals). Afterwards, we apply linear regression to predict the fading rate in the future. We validate the quality of these predictions by spectrally comparing them with temporal observations not included in the training part. Furthermore, we statistically assess the goodness of our model in explaining new data, collected from another region of the painting. Finally, we propose a visual way to explore the artist’s palette, where potential matches between endmembers and reference spectral libraries can be evaluated based on three metrics at once.

Funder

NTNU Norwegian University of Science and Technology

Publisher

Springer Science and Business Media LLC

Subject

Archeology,Archeology,Conservation,Computer Science Applications,Materials Science (miscellaneous),Chemistry (miscellaneous),Spectroscopy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3