Abstract
AbstractOomycetes, such as Pythium species, contain numerous devastating plant pathogens that inflict substantial economic losses worldwide. Although CRISPR/Cas9-based genome editing is available, the selection markers available for genetic transformation in these species are limited. In this study, a mutated version of the Phytophthora capsici oxysterol-binding protein-related protein 1 (PcMuORP1), known to confer oxathiapiprolin resistance, was introduced into the CRISPR/Cas9 system for in situ complementation in Pythium ultimum. We targeted PuLLP, which encodes a loricrin-like protein, and showed significant downregulation when the Puf RNA-binding protein-encoding gene PuM90 was knocked out. The PuLLP knockout mutants could not produce oospores, indicating a similar biological function as PuM90. The reintroduction of PuLLP into the knockout mutant using PcMuORP1 as a selection marker restored oospore production. Further comparisons with the conventional selection marker NPTII indicated that PcMuORP1 could be applied at a lower concentration and cost, resulting in a higher screening efficiency. Successive subculturing in the absence of selective pressure showed that PcMuORP1 had little long-term effect on the fitness of transformants. Hence, it could be reused as an alternative selection marker. This study demonstrates the successful implementation of the PcMuORP1 gene as a selection marker in the genetic transformation of Py. ultimum and reveals the loricrin-like protein PuLLP as a sexual reproduction-related factor downstream of the Puf RNA-binding protein PuM90. Overall, these results will help accelerate the functional genomic investigation of oomycetes.
Funder
National Natural Science Foundation of China
Central Public-interest Scientific Institution Basal Research Fund, Chinese Academy of Fishery Sciences
National Innovation and Entrepreneurship Training for University of PRC Project
Publisher
Springer Science and Business Media LLC
Subject
Plant Science,Genetics,Biochemistry, Genetics and Molecular Biology (miscellaneous),Physiology
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献