The phytopathogen Xanthomonas campestris scavenges hydroxycinnamic acids in planta via the hca cluster to increase virulence on its host plant

Author:

Chen Bo,Li Rui-Fang,Zhou Lian,Song Kai,Poplawsky Alan R.,He Ya-WenORCID

Abstract

AbstractXanthomonas campestris pv. campestris (Xcc) is the causal agent of black rot of cruciferous plants, which harbor high levels of hydroxycinnamic acids (HCAs) in their above-ground parts. Thus, upon infection of the host plant, the pathogen experiences a complex cocktail of HCAs. The present study shows that Xcc can efficiently degrade the HCAs, 4-hydroxycinnamic acid (4-HCA), ferulic acid (FA) and sinapic acid (SiA), via an hca cluster which encodes putative genes for a 4-hydroxycinnamoyl-CoA synthetase/4-HCA ligase HcaL, a benzaldehyde dehydrogenase HcaD, a 4-hydroxycinnamoyl-CoA hydratase/lyase HcaH and a member of the MarR-family of transcriptional factors, HcaR. Xcc also degrades the HCA caffeic acid, but with an alternative mechanism. RT-PCR and subsequent GUS assays show that the hca cluster is transcribed within a single operon, and its transcription is specifically induced by 4-HCA, FA and SiA. Furthermore, we show that HcaR negatively regulates hca transcription when its ligand, the proposed degradation pathway intermediate HCA-CoA, is not present. HcaR specifically binds to a 25-bp site, which encompasses the -10 elements of the hca promoter. Finally, GUS histochemical staining and subsequent quantitative analysis shows that the hca cluster is transcribed in planta during pathogenesis of Chinese radish, and hca deletion mutant strains exhibit compromised virulence in cabbage. Together, these results suggest that the ability to degrade HCAs contributes to Xcc virulence by facilitating its growth and spread, and by protecting the pathogen from HCA toxicity. A working model to explain Xcc HCA sensing and subsequent induction of the HCA degradation process is proposed.

Funder

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

Plant Science,Genetics,Biochemistry, Genetics and Molecular Biology (miscellaneous),Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3