Host plant-derived benzoic acid interferes with 4-hydroxybenzoic acid degradation in the phytopathogen Xanthomonas campestris by competitively binding to PobR

Author:

Chen Bo,Zhou Lian,Song Kai,Thawai Chitti,He Ya-WenORCID

Abstract

AbstractXanthomonas campestris pv. campestris (Xcc) is the causal agent of black rot in Brassica vegetables, which can induce the host plant to produce salicylic acid and 4-hydroxybenzoic acid (4-HBA) during infection. Xcc was previously shown to sense and degrade host plant-derived 4-HBA via the sensor PobR and a PobA-dependent pathway. The degradation of 4-HBA is associated with Xcc virulence in cabbage. The present study generated a reporter strain XC1::PpobA-gusA to monitor pobA transcription. 4-HBA-like compounds were screened for their ability to interfere with pobA transcription. Benzoic acid (BA) was found to efficiently decrease pobA transcription in a dose-dependent manner. Xcc neither produced nor degraded BA; however, the exogenous addition of BA to the 4-HBA-containing Xcc culture significantly decreased the 4-HBA degradation rate. Furthermore, addition of BA into the Xcc culture did not significantly affect the transcription of pobA or pobR; however, addition of BA into the 4-HBA-containing culture significantly decreased the transcription of both genes. Isothermal titration calorimetry and an electrophoretic mobility shift assay revealed that BA binds to PobR with a moderate affinity, which interfered with the binding of 4-HBA/PobR complex to the pobA promoter and thereby inhibiting pobA transcription and 4-HBA degradation. The endogenous BA level of the infected cabbage leaves increased in response to Xcc infection. In the presence of BA, the virulence of Xcc on cabbage decreased significantly. Taken together, these results suggest that cabbage utilizes BA to interfere with 4-HBA degradation, thereby reducing Xcc virulence. Thus, BA has the potential to be developed as a bactericide against Xcc infection.

Funder

National Natural Science Foundation of China

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3