Uncovering the mechanisms underlying pear leaf apoplast protein-mediated resistance against Colletotrichum fructicola through transcriptome and proteome profiling

Author:

Han Chenyang,Su Zhiyuan,Zhao Yancun,Li Chaohui,Guo Baodian,Wang Qi,Liu Fengquan,Zhang ShaolingORCID

Abstract

AbstractPear anthracnose, caused by the fungus Colletotrichum fructicola, is a devastating disease for the pear industry. The apoplast, an extracellular compartment outside the plasma membrane, plays a crucial role in water and nutrient transport, as well as plant-microbe interactions. This study aimed to uncover the molecular mechanism of pear leaf apoplastic protein-mediated resistance to C. fructicola. Apoplast fluid was isolated using the vacuum infiltration method, and defence-related apoplastic proteins were identified through protein mass spectrometry and transcriptome sequencing. We found 213 apoplastic proteins in the leaf apoplast fluid during early C. fructicola infection, with the majority (74.64%) being enzymes, including glycosidases, proteases, and oxidoreductases. Gene Ontology analysis revealed their involvement in defence response, enzyme inhibition, carbohydrate metabolism, and phenylpropanoid biosynthesis. Transcriptome analysis showed the infection induced expression of certain apoplast proteins, potentially contributing to pear leaf resistance. Notably, the expression of PbrGlu1, an endo-β-1,3-glucanase from the glycoside hydrolase 17 family, was significantly higher in infected leaves. Silencing of the PbrGlu1 gene increased pear leaf susceptibility to C. fructicola, leading to more severe symptoms and higher reactive oxygen species content. Overall, our study provides insights into the apoplast space interaction between pear leaves and C. fructicola, identifies a key gene in infected pears, and offers a foundation and new strategy for understanding the molecular mechanisms underlying pear anthracnose and breeding disease-resistant pears.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3