Abstract
AbstractIn recent years, the Internet of vehicles (IOV) with intelligent networked automobiles as terminal node has gradually become the development trend of automotive industry and research hot spot in related fields. This is due to its characteristics of intelligence, networking, low-carbon and energy saving. Real time emotion recognition for drivers and pedestrians in the community can be utilized to prevent fatigue driving and malicious collision, keep safety verification and pedestrian safety detection. This paper mainly studies the face emotion recognition model that can be utilized for IOV. Considering the fluctuation of image acquisition perspective and image quality in the application scene of IOV, the natural scene video similar to vehicle environment and its galvanic skin response (GSR) are utilized to make the testing set of emotion recognition. Then an expression recognition model combining codec and Support Vector Machine classifier is proposed. Finally, emotion recognition testing is completed on the basis of Algorithm 1. The matching accuracy between the emotion recognition model and GSR is 82.01%. In the process of model testing, 189 effective videos are involved and 155 are correctly identified.
Funder
shenzhen science and technology innovation committee
shenzhen Institute of Information Technology School-level Innovative Scientific Research Team
Publisher
Springer Science and Business Media LLC
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献