An Optimized and Efficient Routing Protocol Application for IoV

Author:

Afzal Kiran1,Tariq Rehan2ORCID,Aadil Farhan2,Iqbal Zeshan2ORCID,Ali Nouman3ORCID,Sajid Muhammad4

Affiliation:

1. Department of Computer Science, COMSATS University Islamabad, Attock Campus, Attock 43600, Pakistan

2. Department of Computer Science, University of Engineering and Technology Taxila, Taxila 47050, Pakistan

3. Department of Software Engineering, Mirpur University of Science and Technology (MUST), Mirpur 10250, Pakistan

4. Department of Electrical Engineering, Mirpur University of Science and Technology (MUST), Mirpur 10250, Pakistan

Abstract

IoV is the latest application of VANET and is the alliance of Internet and IoT. With the rapid progress in technology, people are searching for a traffic environment where they would have maximum collaboration with their surroundings which comprise other vehicles. It has become a necessity to find such a traffic environment where we have less traffic congestion, minimum chances of a vehicular collision, minimum communication delay, fewer communication errors, and a greater message delivery ratio. For this purpose, a vehicular ad hoc network (VANET) was devised where vehicles were communicating with each other in an infrastructureless environment. In VANET, vehicles communicate in an ad hoc manner and communicate with each other to deliver messages, for infotainment purposes or for warning other vehicles about emergency scenarios. Unmanned aerial vehicle- (UAV-) assisted VANET is one of the emerging fields nowadays. For VANET’s routing efficiency, several routing protocols are being used like optimized link state routing (OLSR) protocol, ad hoc on-demand distance vector (AODV) routing protocol, and destination-sequenced distance vector (DSDV) protocol. To meet the need of the upcoming era of artificial intelligence, researchers are working to improve the route optimization problems in VANETs by employing UAVs. The proposed system is based on a model of VANET involving interaction with aerial nodes (UAVs) for efficient data delivery and better performance. Comparisons of traditional routing protocols with UAV-based protocols have been made in the scenario of vehicle-to-vehicle (V2V) communication. Later on, communication of vehicles via aerial nodes has been studied for the same purpose. The results have been generated through various simulations. After performing extensive simulations by varying different parameters over grid sizes of 300 × 1500 m to 300 × 6000 m, it is evident that although the traditional DSDV routing protocol performs 14% better than drone-assisted destination-sequenced distance vector (DA-DSDV) when we have number of sinks equal to 25, the performance of drone-assisted optimized link state routing (DA-OLSR) protocol is 0.5% better than that of traditional OLSR, whereas drone-assisted ad hoc on-demand distance vector (DA-AODV) performs 22% better than traditional AODV. Moreover, if we increase the number of sinks up to 50, it can be clearly seen that the DA-AODV outperforms the rest of the routing protocols by up to 60% (either traditional routing protocol or drone-assisted routing protocol). In addition, for parameters like MAC/PHY overhead and packet delivery ratio, the performance of our proposed drone-assisted variants of protocols is also better than that of the traditional routing protocols. These results show that our proposed strategy performs better than the traditional VANET protocols and plays important role in minimizing the MAC/PHY and enhancing the average throughput along with average packet delivery ratio.

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3