Semi-supervised underwater acoustic source localization based on residual convolutional autoencoder

Author:

Jin Pian,Wang BiaoORCID,Li Lebo,Chao Peng,Xie Fangtong

Abstract

AbstractPassive localization of underwater targets was a thorny problem in underwater acoustics. For traditional model-driven passive localization methods, the main challenges are the inevitable environmental mismatch and the presence of interference and noise everywhere. In recent years, data-driven machine learning approaches have opened up new possibilities for passive localization of underwater acoustics. However, the acquisition and processing of underwater acoustics data are more restricted than other scenarios, and the lack of data is one of the most enormous difficulties in the application of machine learning to underwater acoustics. To take full advantage of the relatively easy accessed unlabeled data, this paper proposes a framework for underwater acoustic source localization based on a two-step semi-supervised learning classification model. The first step is trained in unsupervised mode with the whole available dataset (labeled and unlabeled dataset), and it consists of a convolutional autoencoder (CAE) for feature extraction and self-attention (RA) mechanism for picking more useful features by applying constraints on the CAE. The second step is trained in supervised mode with the labeled dataset, and it consists of a multilayer perceptron connected to an encoder from the first step and is used to perform the source location task. The proposed framework is validated on uniform vertical line array data of SWellEx-96 event S5. Compared with the supervised model and the model without the RA, the proposed framework maintains good localization performance with the reduced labeled dataset, and the proposed framework is more robust when the training dataset and the test dataset of the second step are distributed differently, which is called “data mismatch.”

Publisher

Springer Science and Business Media LLC

Subject

General Medicine

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3