Mechanical Fault Sound Source Localization Estimation in a Multisource Strong Reverberation Environment

Author:

Deng Yaohua1ORCID,Liu Xiali1ORCID,Zhang Zilin1ORCID,Zeng Daolong1ORCID

Affiliation:

1. School of Electromechanical Engineering, Guangdong University of Technology, Guangzhou 510006, China

Abstract

Aiming at the sound source localization of mechanical faults in a strong reverberation scenario with multiple sound sources, this paper investigates a mechanical fault source localization method using the U-net deep convolutional neural network. The method utilizes the SRP-PHAT algorithm to calculate the response power spectra of the collected multichannel fault signals. Through the utilization of the U-net neural network, the response power spectra containing spurious peaks are transformed into “clean” estimated source distribution maps. By employing interpolation search, the estimated source distribution maps are processed to obtain location estimations for multiple fault sources. To validate the effectiveness of the proposed method, this paper constructs an experimental dataset using mechanical fault data from electromechanical equipment relays and conducts sound source localization experiments. The experimental results show that the U-net network under 0.2 s/0.5 s/0.7 s reverberation time can effectively eliminate spurious peak interference in the response power spectrum. As the signal-to-noise ratio decreases, it can still distinguish the sound sources with a distance of 0.2 m. In the context of multifault source localization, the method is capable of simultaneously locating the positions of four fault sources, with an average localization error of less than 0.02 m. The method in this paper effectively eliminates spurious peaks in the response power spectra under conditions of multisource strong reverberation. It accurately locates multiple mechanical fault sources, thereby significantly enhancing the efficiency of mechanical fault detection.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3