EEG emotion recognition based on differential entropy feature matrix through 2D-CNN-LSTM network

Author:

Wang Teng,Huang XiaoqiaoORCID,Xiao Zenan,Cai Wude,Tai Yonghang

Abstract

AbstractEmotion recognition research has attracted great interest in various research fields, and electroencephalography (EEG) is considered a promising tool for extracting emotion-related information. However, traditional EEG-based emotion recognition methods ignore the spatial correlation between electrodes. To address this problem, this paper proposes an EEG-based emotion recognition method combining differential entropy feature matrix (DEFM) and 2D-CNN-LSTM. In this work, first, the one-dimensional EEG vector sequence is converted into a two-dimensional grid matrix sequence, which corresponds to the distribution of brain regions of the EEG electrode positions, and can better characterize the spatial correlation between the EEG signals of multiple adjacent electrodes. Then, the EEG signal is divided into equal time windows, and the differential entropy (DE) of each electrode in this time window is calculated, it is combined with a two-dimensional grid matrix and differential entropy to obtain a new data representation that can capture the spatiotemporal correlation of the EEG signal, which is called DEFM. Secondly, we use 2D-CNN-LSTM to accurately identify the emotional categories contained in the EEG signals and finally classify them through the fully connected layer. Experiments are conducted on the widely used DEAP dataset. Experimental results show that the method achieves an average classification accuracy of 91.92% and 92.31% for valence and arousal, respectively. The method performs outstandingly in emotion recognition. This method effectively combines the temporal and spatial correlation of EEG signals, improves the accuracy and robustness of EEG emotion recognition, and has broad application prospects in the field of emotion classification and recognition based on EEG signals.

Funder

the National Natural Science Foundation of China

Natural Science Foundation of Yunnan Province

Postdoctoral Research Fund of Yunnan Province

Publisher

Springer Science and Business Media LLC

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3