High-Accuracy Classification of Multiple Distinct Human Emotions Using EEG Differential Entropy Features and ResNet18

Author:

Yao Longxin1,Lu Yun2,Qian Yukun1,He Changjun1,Wang Mingjiang1

Affiliation:

1. School of Electronic and Information Engineering, Harbin Institute of Technology at Shenzhen, Shenzhen 518055, China

2. School of Computer Science and Engineering, Huizhou University, Huizhou 516007, China

Abstract

The high-accuracy detection of multiple distinct human emotions is crucial for advancing affective computing, mental health diagnostics, and human–computer interaction. The integration of deep learning networks with entropy measures holds significant potential in neuroscience and medicine, especially for analyzing EEG-based emotion states. This study proposes a method combining ResNet18 with differential entropy to identify five types of human emotions (happiness, sadness, fear, disgust, and neutral) from EEG signals. Our approach first calculates the differential entropy of EEG signals to capture the complexity and variability of the emotional states. Then, the ResNet18 network is employed to learn feature representations from the differential entropy measures, which effectively captures the intricate spatiotemporal dynamics inherent in emotional EEG patterns using residual connections. To validate the efficacy of our method, we conducted experiments on the SEED-V dataset, achieving an average accuracy of 95.61%. Our findings demonstrate that the combination of ResNet18 with differential entropy is highly effective in classifying multiple distinct human emotions from EEG signals. This method shows robust generalization and broad applicability, indicating its potential for extension to various pattern recognition tasks across different domains.

Funder

National Natural Science Foundation of China

Guangdong Basic and Applied Basic Research Foundation

the Professorial and Doctoral Scientific Research Foundation of Huizhou University

the Planning Project of Enhanced Independent Innovation Ability of Huizhou University

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3