Speech enhancement from fused features based on deep neural network and gated recurrent unit network

Author:

Wang YoumingORCID,Han Jiali,Zhang Tianqi,Qing Didi

Abstract

AbstractSpeech is easily interfered by external environment in reality, which results in the loss of important features. Deep learning has become a popular speech enhancement method because of its superior potential in solving nonlinear mapping problems for complex features. However, the deficiency of traditional deep learning methods is the weak learning capability of important information from previous time steps and long-term event dependencies between the time-series data. To overcome this problem, we propose a novel speech enhancement method based on the fused features of deep neural networks (DNNs) and gated recurrent unit (GRU). The proposed method uses GRU to reduce the number of parameters of DNNs and acquire the context information of the speech, which improves the enhanced speech quality and intelligibility. Firstly, DNN with multiple hidden layers is used to learn the mapping relationship between the logarithmic power spectrum (LPS) features of noisy speech and clean speech. Secondly, the LPS feature of the deep neural network is fused with the noisy speech as the input of GRU network to compensate the missing context information. Finally, GRU network is performed to learn the mapping relationship between LPS features and log power spectrum features of clean speech spectrum. The proposed model is experimentally compared with traditional speech enhancement models, including DNN, CNN, LSTM and GRU. Experimental results demonstrate that the PESQ, SSNR and STOI of the proposed algorithm are improved by 30.72%, 39.84% and 5.53%, respectively, compared with the noise signal under the condition of matched noise. Under the condition of unmatched noise, the PESQ and STOI of the algorithm are improved by 23.8% and 37.36%, respectively. The advantage of the proposed method is that it uses the key information of features to suppress noise in both matched and unmatched noise cases and the proposed method outperforms other common methods in speech enhancement.

Funder

The Graduate Student Innovation Fund of Xi'an University of Post and Telecommunications

The Key Research and Development Program of Shaanxi Province of China

Publisher

Springer Science and Business Media LLC

Reference27 articles.

1. P.C. Loizou, Speech Enhancement: Theory and Practice, 2nd edn. (CRC Press, Cambridge, 2013)

2. C. Valentinibotinhao, J. Yamagishi, S. King, Evaluating speech intelligibility enhancement for HMM-based synthetic speech in noise (2012)

3. H.N. Moritz, T. Roux, Triggered attention for end-to-end speech recognition. In: Icassp IEEE International Conference on Acoustics (IEEE, 2019).

4. T.V. Sreenivas, P. Rao, Pitch extraction from corrupted harmonics of the power spectrum. J Acoust Soc Am 65(1), 223–228 (1979)

5. C. Fdlwa, Vanessa Aparecida de Moraes Weber b e, C. Gvm, et al. Recognition of Pantaneira cattle breed using computer vision and convolutional neural networks-ScienceDirect. Comput. Electron. Agric. 175.

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3