Stacked Multiscale Densely Connected Temporal Convolutional Attention Network for Multi-Objective Speech Enhancement in an Airborne Environment

Author:

Huang Ping1ORCID,Wu Yafeng1

Affiliation:

1. School of Power and Energy, Northwestern Polytechnical University, Xi’an 710072, China

Abstract

Airborne speech enhancement is always a major challenge for the security of airborne systems. Recently, multi-objective learning technology has become one of the mainstream methods of monaural speech enhancement. In this paper, we propose a novel multi-objective method for airborne speech enhancement, called the stacked multiscale densely connected temporal convolutional attention network (SMDTANet). More specifically, the core of SMDTANet includes three parts, namely a stacked multiscale feature extractor, a triple-attention-based temporal convolutional neural network (TA-TCNN), and a densely connected prediction module. The stacked multiscale feature extractor is leveraged to capture comprehensive feature information from noisy log-power spectra (LPS) inputs. Then, the TA-TCNN adopts a combination of these multiscale features and noisy amplitude modulation spectrogram (AMS) features as inputs to improve its powerful temporal modeling capability. In TA-TCNN, we integrate the advantages of channel attention, spatial attention, and T-F attention to design a novel triple-attention module, which can guide the network to suppress irrelevant information and emphasize informative features of different views. The densely connected prediction module is used to reliably control the flow of the information to provide an accurate estimation of clean LPS and the ideal ratio mask (IRM). Moreover, a new joint-weighted (JW) loss function is constructed to further improve the performance without adding to the model complexity. Extensive experiments on real-world airborne conditions show that our SMDTANet can obtain an on-par or better performance compared to other reference methods in terms of all the objective metrics of speech quality and intelligibility.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3