Greedy sensor selection based on QR factorization

Author:

Kim Yoon HakORCID

Abstract

AbstractWe address the problem of selecting a given number of sensor nodes in wireless sensor networks where noise-corrupted linear measurements are collected at the selected nodes to estimate the unknown parameter. Noting that this problem is combinatorial in nature and selection of sensor nodes from a large number of nodes would require unfeasible computational cost, we propose a greedy sensor selection method that seeks to choose one node at each iteration until the desired number of sensor nodes are selected. We first apply the QR factorization to make the mean squared error (MSE) of estimation a simplified metric which is iteratively minimized. We present a simple criterion which enables selection of the next sensor node minimizing the MSE at iterations. We discuss that a near-optimality of the proposed method is guaranteed by using the approximate supermodularity and also make a complexity analysis for the proposed algorithm in comparison with different greedy selection methods, showing a reasonable complexity of the proposed method. We finally run extensive experiments to investigate the estimation performance of the different selection methods in various situations and demonstrate that the proposed algorithm provides a good estimation accuracy with a competitive complexity when compared with the other novel greedy methods.

Funder

chosun university

Publisher

Springer Science and Business Media LLC

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Greedy Selection of Sensors for Linear Bayesian Estimation under Correlated Noise;IEICE Transactions on Information and Systems;2024-09-01

2. Greedy selection of sensors with measurements under correlated noise;EURASIP Journal on Advances in Signal Processing;2024-03-11

3. Correction to: Greedy sensor selection based on QR factorization;EURASIP Journal on Advances in Signal Processing;2022-10-14

4. Optimal Field Sampling of Arc Sources via Asymptotic Study of the Radiation Operator;Electronics;2022-01-14

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3