Greedy selection of sensors with measurements under correlated noise

Author:

Kim Yoon HakORCID

Abstract

AbstractWe address the sensor selection problem where linear measurements under correlated noise are gathered at the selected nodes to estimate the unknown parameter. Since finding the best subset of sensor nodes that minimizes the estimation error requires a prohibitive computational cost especially for a large number of nodes, we propose a greedy selection algorithm that uses the log-determinant of the inverse estimation error covariance matrix as the metric to be maximized. We further manipulate the metric by employing the QR and LU factorizations to derive a simple analytic rule which enables an efficient selection of one node at each iteration in a greedy manner. We also make a complexity analysis of the proposed algorithm and compare with different selection methods, leading to a competitive complexity of the proposed algorithm. For performance evaluation, we conduct numerical experiments using randomly generated measurements under correlated noise and demonstrate that the proposed algorithm achieves a good estimation accuracy with a reasonable selection complexity as compared with the previous novel selection methods.

Funder

Chosun University

Publisher

Springer Science and Business Media LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Greedy Selection of Sensors for Linear Bayesian Estimation under Correlated Noise;IEICE Transactions on Information and Systems;2024-09-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3