A parallel ADMM-based convex clustering method

Author:

Fodor LidijaORCID,Jakovetić Dušan,Boberić Krstićev Danijela,Škrbić Srđan

Abstract

AbstractConvex clustering has received recently an increased interest as a valuable method for unsupervised learning. Unlike conventional clustering methods such as k-means, its formulation corresponds to solving a convex optimization problem and hence, alleviates initialization and local minima problems. However, while several algorithms have been proposed to solve convex clustering formulations, including those based on the alternating direction method of multipliers (ADMM), there is currently a limited body of work on developing scalableparallel and distributedalgorithms and solvers for convex clustering. In this paper, we develop a parallel, ADMM-based method, for a modified convex clustering sum-of-norms (SON) formulation for master–worker architectures, where the data to be clustered are partitioned across a number of worker nodes, and we provide its efficient, open-source implementation (available on Parallel ADMM-based convex clustering.https://github.com/lidijaf/Parallel-ADMM-based-convex-clustering. Accessed on 10 June 2022) for high-performance computing (HPC) cluster environments. Extensive numerical evaluations on real and synthetic data sets demonstrate a high degree of scalability and efficiency of the method, when compared with existing alternative solvers for convex clustering.

Publisher

Springer Science and Business Media LLC

Subject

General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A parallel ADMM-based convex clustering method;EURASIP Journal on Advances in Signal Processing;2022-11-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3