Abstract
AbstractAutomatic Dependent Surveillance-Broadcast (ADS-B) is a critical technology to transform aircraft navigation by improving safety and overall effectiveness in the aviation industry. However, overlapping of ADS-B signals is a large challenge, especially for space-based ADS-B systems. Existing traditional methods are not effective when dealing with cases that overlapped signals with small difference (such as power difference and carrier frequency difference) require to be separated. In order to generate an effective separation performance of the ADS-B signals by exploring its temporal relationship, Independently Convolutional Gated Recurrent Neural Unit (Ind-CGRU) is presented for encoder–decoder network construction. Experimental results on the dataset SR-ADSB demonstrate that the proposed Ind-CGRU achieves good performance.
Funder
National Natural Science Foun- dation of China
Key Technology Research and Development Program of Shandong
Fundamental Research Program of Shanxi Province
Shanxi Scholarship Council of China
Publisher
Springer Science and Business Media LLC