Radar signal recognition based on triplet convolutional neural network

Author:

Liu Lutao,Li XinyuORCID

Abstract

AbstractRecently, due to the wide application of low probability of intercept (LPI) radar, lots of recognition approaches about LPI radar signal modulations have been proposed. However, facing the increasingly complex electromagnetic environment, most existing methods have poor performance to identify different modulation types in low signal-to-noise ratio (SNR). This paper proposes an automatic recognition method for different LPI radar signal modulations. Firstly, time-domain signals are converted to time-frequency images (TFIs) by smooth pseudo-Wigner–Ville distribution. Then, these TFIs are fed into a designed triplet convolutional neural network (TCNN) to obtain high-dimensional feature vectors. In essence, TCNN is a CNN network that triplet loss is adopted to optimize parameters of the network in the training process. The participation of triplet loss can ensure that the distance between samples in different classes is greater than that between samples with the same label, improving the discriminability of TCNN. Eventually, a fully connected neural network is employed as the classifier to recognize different modulation types. Simulation shows that the overall recognition success rate can achieve 94% at − 10 dB, which proves the proposed method has a strong discriminating capability for the recognition of different LPI radar signal modulations, even under low SNR.

Funder

national natural science foundation of china

fundamental research funds for the central universities

Publisher

Springer Science and Business Media LLC

Reference46 articles.

1. M. Gupta, G. Hareesh, A.K. Mahla, Electronic warfare: issues and challenges for emitter classification. Def. Sci. J. 61(3), 228–234 (2011). https://doi.org/10.14429/dsj.61.529

2. R.G. Wiley, I. Ebrary, Elint: The Interception and Analysis of Radar Signals (Artech House, Boston, 2006)

3. D. Schleher, Low probability of intercept radar, in International Radar Conference, pp. 346–349 (1985)

4. R. Wiley, Electronic Intelligence: The Interception of Radar Signals (Artech House, Inc, Dedham, 1985)

5. J. Lunden, V. Koivunen, Automatic radar waveform recognition. IEEE J. Sel. Top. Signal Process. 1(1), 124–136 (2007). https://doi.org/10.1109/JSTSP.2007.897055

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3