Abstract
AbstractRecently, due to the wide application of low probability of intercept (LPI) radar, lots of recognition approaches about LPI radar signal modulations have been proposed. However, facing the increasingly complex electromagnetic environment, most existing methods have poor performance to identify different modulation types in low signal-to-noise ratio (SNR). This paper proposes an automatic recognition method for different LPI radar signal modulations. Firstly, time-domain signals are converted to time-frequency images (TFIs) by smooth pseudo-Wigner–Ville distribution. Then, these TFIs are fed into a designed triplet convolutional neural network (TCNN) to obtain high-dimensional feature vectors. In essence, TCNN is a CNN network that triplet loss is adopted to optimize parameters of the network in the training process. The participation of triplet loss can ensure that the distance between samples in different classes is greater than that between samples with the same label, improving the discriminability of TCNN. Eventually, a fully connected neural network is employed as the classifier to recognize different modulation types. Simulation shows that the overall recognition success rate can achieve 94% at − 10 dB, which proves the proposed method has a strong discriminating capability for the recognition of different LPI radar signal modulations, even under low SNR.
Funder
national natural science foundation of china
fundamental research funds for the central universities
Publisher
Springer Science and Business Media LLC
Reference46 articles.
1. M. Gupta, G. Hareesh, A.K. Mahla, Electronic warfare: issues and challenges for emitter classification. Def. Sci. J. 61(3), 228–234 (2011). https://doi.org/10.14429/dsj.61.529
2. R.G. Wiley, I. Ebrary, Elint: The Interception and Analysis of Radar Signals (Artech House, Boston, 2006)
3. D. Schleher, Low probability of intercept radar, in International Radar Conference, pp. 346–349 (1985)
4. R. Wiley, Electronic Intelligence: The Interception of Radar Signals (Artech House, Inc, Dedham, 1985)
5. J. Lunden, V. Koivunen, Automatic radar waveform recognition. IEEE J. Sel. Top. Signal Process. 1(1), 124–136 (2007). https://doi.org/10.1109/JSTSP.2007.897055
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献