Radar Emitter Structure Inversion Method Based on Metric and Deep Learning

Author:

Liu Lutao1,Zhang Wei1,Jiang Yilin1ORCID,Yang Yaozu1,Song Yu2

Affiliation:

1. Key Laboratory of Advanced Marine Communication and Information Technology, Ministry of Industry and Information Technology, Harbin Engineering University, Harbin 150001, China

2. Harbin Institute of Technology, Harbin 150001, China

Abstract

With the rapid development of modern military countermeasure technology, deep distinguish hostile radar is essential in electronic warfare. However, traditional radio frequency (RF) feature extraction methods can easily be interfered by signal information and fail due to the lack of research on RF feature extraction techniques for complex situations. Therefore, in this paper, first, the generation mechanism of RF structure information is discussed, and the influence of different signal information introduced by different operating parameters on RF structure feature extraction is analyzed. Then, an autoencoder (AE) network and an autoencoder metric (AEM) network are designed, introducing metric learning ideas, so that the extracted deep RF structure features have good stability and divisibility. Finally, radar emitter structure (RES) inversion is realized using the centroid-matching method. The experimental results demonstrate that this method exhibits good inversion performance under variable operating parameters (modulation type, frequency, bandwidth, input power). RES inversion including unknown operating parameters is realized for the first time, and it is shown that metric learning has the advantage of separability of RF feature extraction, which can provide an idea in emitter and RF feature extraction.

Funder

National Natural Science Foundation of China

Key Laboratory of Advanced Marine Communication and Information Technology

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference59 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3