Multiclass objects detection algorithm using DarkNet-53 and DenseNet for intelligent vehicles

Author:

Yang LinaORCID,Chen Gang,Ci Wenyan

Abstract

AbstractIntelligent vehicles should not only be able to detect various obstacles, but also identify their categories so as to take an appropriate protection and intervention. However, the scenarios of object detection are usually complex and changeable, so how to balance the relationship between accuracy and speed is a difficult task of object detection. This paper proposes a multi-object detection algorithm using DarkNet-53 and dense convolution network (DenseNet) to further ensure maximum information flow between layers. Three 8-layer dense blocks are used to replace the last three downsampling layers in DarkNet-53 structure, so that the network can make full use of multi-layer convolution features before prediction. The loss function of coordinate prediction error in YOLOv3 is further improved to improve the detection accuracy. Extensive experiments are conducted on the public KITTI and Pascal VOC datasets, and the results demonstrate that the proposed algorithm has better robustness, and the network model is more suitable for the traffic scene in the real driving environment and has better adaptability to the objects with long distance, small size and partial occlusion.

Funder

Zhejiang Province Public Welfare Technology Application Research Project

Scientific Research Project of Jiaxing University

Publisher

Springer Science and Business Media LLC

Subject

General Medicine

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3