Enhancing Fruit Fly Detection in Complex Backgrounds Using Transformer Architecture with Step Attention Mechanism

Author:

Zhang Lexin1,Chen Kuiheng1,Zheng Liping1,Liao Xuwei1,Lu Feiyu1,Li Yilun1,Cui Yuzhuo1,Wu Yaze1,Song Yihong12,Yan Shuo1ORCID

Affiliation:

1. China Agricultural University, Beijing 100083, China

2. Tsinghua University, Beijing 100083, China

Abstract

This study introduces a novel high-accuracy fruit fly detection model based on the Transformer structure, specifically aimed at addressing the unique challenges in fruit fly detection such as identification of small targets and accurate localization against complex backgrounds. By integrating a step attention mechanism and a cross-loss function, this model significantly enhances the recognition and localization of fruit flies within complex backgrounds, particularly improving the model’s effectiveness in handling small-sized targets and its adaptability under varying environmental conditions. Experimental results demonstrate that the model achieves a precision of 0.96, a recall rate of 0.95, an accuracy of 0.95, and an F1-score of 0.95 on the fruit fly detection task, significantly outperforming leading object detection models such as YOLOv8 and DETR. Specifically, this research delves into and optimizes for challenges faced in fruit fly detection, such as recognition issues under significant light variation, small target size, and complex backgrounds. Through ablation experiments comparing different data augmentation techniques and model configurations, the critical contributions of the step attention mechanism and cross-loss function to enhancing model performance under these complex conditions are further validated. These achievements not only highlight the innovativeness and effectiveness of the proposed method, but also provide robust technical support for solving practical fruit fly detection problems in real-world applications, paving new paths for future research in object detection technology.

Funder

Research and Application of Industrial Technology System for Organic Agriculture in Yunnan Plateau

Yunnan Academician Expert Workstation

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3