Automatic Plant Disease Detection Based on Tranvolution Detection Network With GAN Modules Using Leaf Images

Author:

Zhang Yan,Wa Shiyun,Zhang Longxiang,Lv Chunli

Abstract

The detection of plant disease is of vital importance in practical agricultural production. It scrutinizes the plant's growth and health condition and guarantees the regular operation and harvest of the agricultural planting to proceed successfully. In recent decades, the maturation of computer vision technology has provided more possibilities for implementing plant disease detection. Nonetheless, detecting plant diseases is typically hindered by factors such as variations in the illuminance and weather when capturing images and the number of leaves or organs containing diseases in one image. Meanwhile, traditional deep learning-based algorithms attain multiple deficiencies in the area of this research: (1) Training models necessitate a significant investment in hardware and a large amount of data. (2) Due to their slow inference speed, models are tough to acclimate to practical production. (3) Models are unable to generalize well enough. Provided these impediments, this study suggested a Tranvolution detection network with GAN modules for plant disease detection. Foremost, a generative model was added ahead of the backbone, and GAN models were added to the attention extraction module to construct GAN modules. Afterward, the Transformer was modified and incorporated with the CNN, and then we suggested the Tranvolution architecture. Eventually, we validated the performance of different generative models' combinations. Experimental outcomes demonstrated that the proposed method satisfyingly achieved 51.7% (Precision), 48.1% (Recall), and 50.3% (mAP), respectively. Furthermore, the SAGAN model was the best in the attention extraction module, while WGAN performed best in image augmentation. Additionally, we deployed the proposed model on Hbird E203 and devised an intelligent agricultural robot to put the model into practical agricultural use.

Publisher

Frontiers Media SA

Subject

Plant Science

Reference41 articles.

1. Toled: tomato leaf disease detection using convolution neural network;Agarwal;Proc. Comput. Sci,2020

2. Climate change and the need for agricultural adaptation;Anderson;Curr. Opin. Plant Biol,2020

3. YOLOv4: optimal speed and accuracy of object detection;Bochkovskiy;arXiv preprint arXiv:2004.10934,2020

4. Recursive erosion, dilation, opening, and closing transforms;Chen,1995

5. Improved regularization of convolutional neural networks with cutout;DeVries;arXiv preprint arXiv:1708.04552,2017

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3