Enhancing Jujube Forest Growth Estimation and Disease Detection Using a Novel Diffusion-Transformer Architecture

Author:

Hu Xiangyi1,Zhang Zhihao1,Zheng Liping1,Chen Tailai1,Peng Chao1,Wang Yilin1,Li Ruiheng1,Lv Xinyang1,Yan Shuo1ORCID

Affiliation:

1. China Agricultural University, Beijing 100083, China

Abstract

This paper proposes an advanced deep learning model that integrates the Diffusion-Transformer structure and parallel attention mechanism for the tasks of growth estimation and disease detection in jujube forests. Existing methods in forestry monitoring often fall short in meeting the practical needs of large-scale and highly complex forest areas due to limitations in data processing capabilities and feature extraction precision. In response to this challenge, this paper designs and conducts a series of benchmark tests and ablation experiments to systematically evaluate and verify the performance of the proposed model across key performance metrics such as precision, recall, accuracy, and F1-score. Experimental results demonstrate that compared to traditional machine learning models like Support Vector Machines and Random Forests, as well as common deep learning models such as AlexNet and ResNet, the model proposed in this paper achieves a precision of 95%, a recall of 92%, an accuracy of 93%, and an F1-score of 94% in the task of disease detection in jujube forests, showing similarly superior performance in growth estimation tasks as well. Furthermore, ablation experiments with different attention mechanisms and loss functions further validate the effectiveness of parallel attention and parallel loss function in enhancing the overall performance of the model. These research findings not only provide a new technical path for forestry disease monitoring and health assessment but also contribute rich theoretical and experimental foundations for related fields.

Funder

Pinduoduo-China Agricultural University Research Fund

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3