Unsupervised active sonar contact classification through anomaly detection

Author:

Stinco PietroORCID,Tesei Alessandra,LePage Kevin D.

Abstract

AbstractTarget detection and sonar contact classification with active sonar systems are not trivial especially when operating in coastal and shallow water environments with multipath propagation, high reverberation and clutter. It is even more difficult when the sonar receiver is hosted on unmanned platforms with limited maneuvering capabilities unable to perform long-lasting tracking procedures. In such environments with high clutter density, real-time classification algorithms to discriminate target contacts from clutter contacts become crucial. This paper describes a method for active sonar clutter classification that exploits the large number of undesired contacts to learn the “fingerprint” of the environmental clutter and thus to identify the target contacts as anomalies. The paper introduces the method to obtain the features of detected sonar contacts from the beamformed signal of a triplet array of hydrophones that can be towed by an autonomous underwater vehicle. The paper also shows the performance of the proposed unsupervised classification algorithm with real data collected at sea and compares it to what has been achieved by using a convolutional neural network. The results show the capability of the proposed anomaly detection algorithm to properly deal with a variety of clutter contacts without requiring labeling of training data.

Funder

NATO Allied Command Transformation

Publisher

Springer Science and Business Media LLC

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3