Joint optimization of dynamic resource allocation and packet scheduling for virtual switches in cognitive internet of vehicles

Author:

Wang Yang,Wang XiongORCID,Huang Zhuobin,Li Wei,Xu Shizhong

Abstract

AbstractThe rapidly evolving machine learning technologies have reshaped the transportation system and played an essential role in the Cognitive Internet of Vehicles (CIoV). Most of the cognitive services are computation-intensive or storage-intensive, and thus they are usually deployed in edge or cloud data centers. In today’s data center networks, the virtual machines hosted in a server are connected to a virtual switch responsible for forwarding all packets for the cognitive services deployed on the virtual machines. Therefore, the virtual switches will become a performance bottleneck for cognitive services without an efficient resource allocation and data scheduling strategy. However, the highly dynamic characteristics of cognitive services make the resource allocation and packet scheduling problem for virtual switches surprisingly challenging. To guarantee the performance of cognitive services, we investigate the joint optimization problem of dynamic resource allocation and packet scheduling for virtual switches. We first model the joint optimization problem of dynamic resource allocation and packet scheduling for virtual switches as a mathematical optimization problem. Then, we analyze the problem with Lyapunov Optimization Framework and derive efficient optimization algorithms with performance tradeoff bounds. At last, we evaluate these algorithms on a testbed and a network-wide simulation platform. Experiment results show that our algorithms outperform other designs and meet the theoretical performance bound.

Funder

National Key R&D Program of China

NSFC Fund

Open Research Projects of Zhejiang Lab

Publisher

Springer Science and Business Media LLC

Subject

General Medicine

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3