Redefining Wireless Communication for 6G:Signal Processing Meets Deep Learning with Deep Unfolding

Author:

Jagannath Anu,Jagannath Jithin,Melodia Tommaso

Abstract

The year 2019 witnessed the rollout of the 5G standard, which promises to offer significant data rate improvement over 4G. While 5G is still in its infancy, there has been an increased shift in the research community for communication technologies beyond 5G. The recent emergence of machine learning approaches for enhancing wireless communications and empowering them with much-desired intelligence holds immense potential for redefining wireless communication for 6G. The evolving communication systems will be bottlenecked in terms of latency, throughput, and reliability by the underlying signal processing at the physical layer. In this position paper, we motivate the need to redesign iterative signal processing algorithms by leveraging deep unfolding techniques to fulfill the physical layer requirements for 6G networks. To this end, we begin by presenting the service requirements and the key challenges posed by the envisioned 6G communication architecture. We outline the deficiencies of the traditional algorithmic principles and data-hungry deep learning (DL) approaches in the context of 6G networks. Specifically, deep unfolded signal processing is presented by sketching the interplay between domain knowledge and DL. The deep unfolded approaches reviewed in this article are positioned explicitly in the context of the requirements imposed by the next generation of cellular networks. Finally, this article motivates open research challenges to truly realize hardware-efficient edge intelligence for future 6G networks.<br>

Publisher

Institute of Electrical and Electronics Engineers (IEEE)

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. AI-Based Wireless Communication;Challenges and Risks Involved in Deploying 6G and NextGen Networks;2022-06-24

2. Joint optimization of dynamic resource allocation and packet scheduling for virtual switches in cognitive internet of vehicles;EURASIP Journal on Advances in Signal Processing;2022-04-04

3. 6G-Enabled Internet of Things: Vision, Techniques, and Open Issues;Computer Modeling in Engineering & Sciences;2022

4. Deep Learning and Reinforcement Learning for Autonomous Unmanned Aerial Systems: Roadmap for Theory to Deployment;Deep Learning for Unmanned Systems;2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3