Author:
Sakamuri Vara Prasad SS,Ananthathmakula Prashanth,Veettil Giridharan Nappan,Ayyalasomayajula Vajreswari
Abstract
Abstract
Background
11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1) catalyzes the conversion of inactive glucocorticoids to active glucocorticoids and its inhibition ameliorates obesity and metabolic syndrome. So far, no studies have reported the effect of dietary vitamin A on 11β-HSD1 activity in visceral fat and liver under normal and obese conditions. Here, we studied the effect of chronic feeding of vitamin A-enriched diet (129 mg/kg diet) on 11β-HSD1 activity in liver and visceral fat of WNIN/Ob lean and obese rats.
Methods
Male, 5-month-old, lean and obese rats of WNIN/Ob strain (n = 16 for each phenotype) were divided into two subgroups consisting of 8 rats of each phenotype. Control groups received stock diet containing 2.6 mg vitamin A/kg diet, where as experimental groups received diet containing 129 mg vitamin A/Kg diet for 20 weeks. Food and water were provided ad libitum. At the end of the experiment, tissues were collected and 11β-HSD1 activity was assayed in liver and visceral fat.
Results
Vitamin A supplementation significantly decreased body weight, visceral fat mass and 11β-HSD1 activity in visceral fat of WNIN/Ob obese rats. Hepatic 11β-HSD1 activity and gene expression were significantly reduced by vitamin A supplementation in both the phenotypes. CCAAT/enhancer binding protein α (C/EBPα), the main transcription factor essential for the expression of 11β-HSD1, decreased in liver of vitamin A fed-obese rats, but not in lean rats. Liver × receptor α (LXRα), a nuclear transcription factor which is known to downregulate 11β-HSD1 gene expression was significantly increased by vitamin A supplementation in both the phenotypes.
Conclusions
This study suggests that chronic consumption of vitamin A-enriched diet decreases 11β-HSD1 activity in liver and visceral fat of WNIN/Ob obese rats. Decreased 11β-HSD1 activity by vitamin A may result in decreased levels of active glucocorticoids in adipose tissue and possibly contribute to visceral fat loss in these obese rats. Studying the role of various nutrients on the regulation of 11β-HSD1 activity and expression will help in the evolving of dietary approaches to treat obesity and insulin resistance.
Publisher
Springer Science and Business Media LLC
Subject
Nutrition and Dietetics,Medicine (miscellaneous)
Reference24 articles.
1. Livingstone DEW, Jones G, Smith K, Jamieson PM, Andrew R Kenyon CJ, Walker BR: Understanding the role of glucocorticoids in obesity: tissue-specific alterations of corticosterone metabolism in obese zucker rats. Endocrinology. 2000, 141: 560-563. 10.1210/en.141.2.560.
2. Rask E, Olsson T, Soderberg S, Andrew R, Livingstone DE, Johnson O, Walker BR: Tissue-specific dysregulation of cortisol metabolism in human obesity. J Clin Endocrinol Metab. 2001, 86: 1418-1421. 10.1210/jc.86.3.1418.
3. Masuzaki H, Paterson J, Shinyama H, Morton NM, Mullins JJ, Seckl JR, Flier JS: A transgenic model of visceral obesity and the metabolic syndrome. Science. 2001, 294: 2166-2170. 10.1126/science.1066285.
4. Morton N, Paterson J, Masuzaki H, Holmes MC, staels B, Fieevet C, Walker B, Flier J, Mullins J, Seckl : Reduced 11β-Hydroxystweroid dehydrogenase type 1-mediated intra-adipose glucocorticoid regeneration: a novel protective adaptation to and treatment for the metabolic syndrome. Program& Abstracts of the 85th Annual Meeting of the Endocrine Society. 2003, 114-June 19-22, abstract OR39-5
5. Nuotio-Antar Alli M, Hachey David L, Hasty Alyssa H: Carbenoxolone treatment attenuates symptoms of metabolic syndrome and atherogenesis in obese, hyperlipidemic mice. Am J Physiol Endocrinol Metab. 2007, 293: E1517-E1528. 10.1152/ajpendo.00522.2007.
Cited by
17 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献