Author:
Brown Jonathan,Sandmann Arne,Ignatius Anita,Amling Michael,Barvencik Florian
Abstract
Abstract
Background
In Germany, vitamin D intake from food and synthesis in the skin is low, which leads to low 25(OH)D serum concentrations. In contrast to many other countries, general vitamin D food fortification is still prohibited in Germany, although the European Commission published a regulatory framework to harmonize addition of vitamins to foods. Thus the purpose of our study was to develop a vitamin D fortification model, taking into account all vitamin D sources with the goal to fulfill requirements of intake recommendations or preferable 25(OH)D serum concentrations. Finally, the aim was to assess the suitability of different carriers and associated risks.
Methods
We developed a mathematical bottom-up model of 25(OH)D serum concentrations based on data about vitamin D sources of the German population such as sunlight, food and supplements for all federal states taking seasonal and geographical variations into account. We used this model to calculate the optimal fortification levels of different vitamin D carriers in two approaches. First we calculated required fortification levels based on fixed intake recommendations from e.g. the IOM or the DGE and second based on achieving certain 25(OH)D serum concentrations.
Results
To lift 25(OH)D serum concentration in Germany to 75 nmol/L, e.g. 100 g bread has to be fortified with 11.3 μg during winter, resulting in a daily vitamin D intake of 23.7 μg. Bread seems to be a suitable carrier for base supply. However, overdose risk with a single fortified product is higher than the risk with several fortified carriers.
Conclusions
With the model in hand, it is possible to conceive vitamin D fortification strategies for different foodstuffs and model its impact on 25(OH)D serum concentrations.
Publisher
Springer Science and Business Media LLC
Subject
Nutrition and Dietetics,Medicine (miscellaneous)
Reference62 articles.
1. Linseisen J, Bechthold A, Bischoff-Ferrari HA, Hintzpeter B, Leschik-Bonnet E, Reichrath J, Stehle P, Volkert D, Wolfram GAZ: Vitamin D und Prävention ausgewählter chronischer Krankheiten - Stellungnahme. DGE. 2011, http://www.dge.de,
2. Melamed ML, Michos ED, Post W, Astor B: 25-Hydroxyvitamin D levels and the risk of mortality in the general population. Arch Intern Med. 2008, 168 (15): 1629-1637. 10.1001/archinte.168.15.1629.
3. Ahonen MH, Tenkanen L, Teppo L, Hakama M, Tuohimaa P: Prostate cancer risk and prediagnostic serum 25-hydroxyvitamin D levels (Finland). Cancer Causes Control. 2000, 11 (9): 847-852. 10.1023/A:1008923802001.
4. Berwick M, Armstrong BK, Ben-Porat L, Fine J, Kricker A, Eberle C, Barnhill R: Sun exposure and mortality from melanoma. J Natl Cancer Inst. 2005, 97 (3): 195-199. 10.1093/jnci/dji019.
5. Chang ET, Smedby KE, Hjalgrim H, Porwit-MacDonald A, Roos G, Glimelius B, Adami H-O: Family history of hematopoietic malignancy and risk of lymphoma. J Natl Cancer Inst. 2005, 97 (19): 1466-1474. 10.1093/jnci/dji293.
Cited by
32 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献