Author:
Stephenson Kevin,Amthor Rachel,Mallowa Sally,Nungo Rhoda,Maziya-Dixon Busie,Gichuki Simon,Mbanaso Ada,Manary Mark
Abstract
AbstractBackgroundInadequate protein intake is known to be deleterious in animals. Using WHO consensus documents for human nutrient requirements, the protein:energy ratio (P:E) of an adequate diet is > 5%. Cassava has a very low protein content. This study tested the hypothesis that Nigerian and Kenyan children consuming cassava as their staple food are at greater risk for inadequate dietary protein intake than those children who consume less cassava.MethodsA 24 hour dietary recall was used to determine the food and nutrient intake of 656 Nigerian and 449 Kenyan children aged 2-5 years residing in areas where cassava is a staple food. Anthropometric measurements were conducted. Diets were scored for diversity using a 12 point score. Pearson's Correlation Coefficients were calculated to relate the fraction of dietary energy obtained from cassava with protein intake, P:E, and dietary diversity.ResultsThe fraction of dietary energy obtained from cassava was > 25% in 35% of Nigerian children and 89% of Kenyan children. The mean dietary diversity score was 4.0 in Nigerian children and 4.5 in Kenyan children, although the mean number of different foods consumed on the survey day in Nigeria was greater than Kenya, 7.0 compared to 4.6. 13% of Nigerian and 53% of Kenyan children surveyed had inadequate protein intake. The fraction of dietary energy derived from cassava was negatively correlated with protein intake, P:E, and dietary diversity. Height-for age z score was directly associated with protein intake and negatively associated with cassava consumption using regression modeling that controlled for energy and zinc intake.ConclusionsInadequate protein intake was found in the diets of Nigerian and Kenyan children consuming cassava as a staple food. Inadequate dietary protein intake is associated with stunting in this population. Interventions to increase protein intake in this vulnerable population should be the focus of future work.
Publisher
Springer Science and Business Media LLC
Subject
Nutrition and Dietetics,Medicine (miscellaneous)
Reference37 articles.
1. Scrimshaw NS, Behar M: Protein malnutrition in young children. Science. 1961, 133: 2039-2047. 10.1126/science.133.3470.2039.
2. McLaren S: The great protein fiasco. Lancet. 1974, 2: 93-96. 10.1016/S0140-6736(74)91649-3.
3. Protein amino acid requirements in human nutrition, report of joint WHO/FAO/UNU expert consultation. 2007, WHO Technical Report Series: 935 WHO, Geneva
4. Atinmo T, Baldijao C, Pond WG, Barnes RH: Prenatal and Postnatal Protein Malnutrition in Pigs: Effects on Growth Rate, Serum Protein and Albumin. J Anim Sci. 1976, 43: 606-612.
5. Cummins A, Bolin T, Duncombe V, Davis A: The effect of methionine and protein deficiency in delaying expulsion of Nippostrongylus brasiliensis in the rat. Am J Clin Nutr. 1986, 44: 857-862.
Cited by
64 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献