Long-term administration of CU06-1004 ameliorates cerebrovascular aging and BBB injury in aging mouse model

Author:

Kim Hyejeong,Noh Minyoung,Zhang Haiying,Kim Yeomyeong,Park Songyi,Park Jeongeun,Kwon Young-Guen

Abstract

Abstract Background Age-related changes in the cerebrovasculature, including blood–brain barrier (BBB) disruption and vascular dementia, are emerging as potential risks for many neurodegenerative diseases. Therefore, the endothelial cells that constitute the cerebrovasculature may play key roles in preventing brain injury. Our previous study showed that CU06-1004, an endothelial cell dysfunction blocker, prevented vascular leakage, enhanced vascular integrity in ischemic reperfusion injury, and promoted the normalization of tumor vasculature. Here, we evaluated the effects of CU06-1004 on age-related cerebrovascular functional decline in the aged mouse brain. Results In this study, we investigated the protective effects of CU06-1004 against oxidative stress–induced damage in human brain microvascular endothelial cells (HBMECs). HBMECs were treated with hydrogen peroxide (H2O2) to establish an oxidative stress–induced model of cellular injury. Compared with H2O2 treatment alone, pretreatment of HBMECs with CU06-1004 considerably reduced oxidative stress–induced cytotoxicity, reactive oxygen species generation, senescence-associated β-galactosidase activity, senescence marker expression, and the expression levels of inflammatory proteins. Based on the observed cytoprotective effects of CU06-1004 in HBMECs, we examined whether CU06-1004 displayed protective effects against cerebrovascular aging in mice. Long-term administration of CU06-1004 alleviated age-associated cerebral microvascular rarefaction and cerebrovascular senescence in the aged mouse brain. CU06-1004 supplementation also reduced the extravasation of plasma IgG by improving BBB integrity in the aged mouse brain, associated with reductions in neuronal injury. A series of behavioral tests also revealed improved motor and cognitive functions in aged mice that received long-term CU06-1004 administration. Conclusions These findings suggest that CU06-1004 may represent a promising therapeutic approach for delaying age-related cerebrovascular impairment and improving cognitive function in old age.

Publisher

Springer Science and Business Media LLC

Subject

Cellular and Molecular Neuroscience,Developmental Neuroscience,Neurology,General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3