Disentangling the impact of cerebrospinal fluid formation and neuronal activity on solute clearance from the brain

Author:

Segeroth Martin,Wachsmuth Lydia,Gagel Mathias,Albers Franziska,Hess Andreas,Faber Cornelius

Abstract

Abstract Background Despite recent attention, pathways and mechanisms of fluid transposition in the brain are still a matter of intense discussion and driving forces underlying waste clearance in the brain remain elusive. Consensus exists that net solute transport is a prerequisite for efficient clearance. The individual impact of neuronal activity and cerebrospinal fluid (CSF) formation, which both vary with brain state and anesthesia, remain unclear. Methods To separate conditions with high and low neuronal activity and high and low CSF formation, different anesthetic regimens in naive rat were established, using Isoflurane (ISO), Medetomidine (MED), acetazolamide or combinations thereof. With dynamic contrast-enhanced MRI, after application of low molecular weight contrast agent (CA) Gadobutrol to cisterna magna, tracer distribution was monitored as surrogate for solute clearance. Simultaneous fiber-based Ca2+-recordings informed about the state of neuronal activity under different anesthetic regimen. T2-weighted MRI and diffusion-weighted MRI (DWI) provided size of subarachnoidal space and aqueductal flow as surrogates for CSF formation. Finally, a pathway and mechanism-independent two-compartment model was introduced to provide a measure of efficiency for solute clearance from the brain. Results Anatomical imaging, DWI and Ca2+-recordings confirmed that conditions with distinct levels of neuronal activity and CSF formation were achieved. A sleep-resembling condition, with reduced neuronal activity and enhanced CSF formation was achieved using ISO+MED and an awake-like condition with high neuronal activity using MED alone. CA distribution in the brain correlated with the rate of CSF formation. The cortical brain state had major influence on tracer diffusion. Under conditions with low neuronal activity, higher diffusivity suggested enlargement of extracellular space, facilitating a deeper permeation of solutes into brain parenchyma. Under conditions with high neuronal activity, diffusion of solutes into parenchyma was hindered and clearance along paravascular pathways facilitated. Exclusively based on the measured time signal curves, the two-compartment model provided net exchange ratios, which were significantly larger for the sleep-resembling condition than for the awake-like condition. Conclusions Efficiency of solute clearance in brain changes with alterations in both state of neuronal activity and CSF formation. Our clearance pathway and mechanism agnostic kinetic model informs about net solute transport, solely based on the measured time signal curves. This rather simplifying approach largely accords with preclinical and clinical findings.

Funder

Deutsche Forschungsgemeinschaft

Westfälische Wilhelms-Universität Münster

Publisher

Springer Science and Business Media LLC

Subject

Cellular and Molecular Neuroscience,Developmental Neuroscience,Neurology,General Medicine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3