Author:
Goncalves Andreia,Antonetti David A.
Abstract
AbstractThe unique environment of the brain and retina is tightly regulated by blood–brain barrier and the blood-retinal barrier, respectively, to ensure proper neuronal function. Endothelial cells within these tissues possess distinct properties that allow for controlled passage of solutes and fluids. Pericytes, glia cells and neurons signal to endothelial cells (ECs) to form and maintain the barriers and control blood flow, helping to create the neurovascular unit. This barrier is lost in a wide range of diseases affecting the central nervous system (CNS) and retina such as brain tumors, stroke, dementia, and in the eye, diabetic retinopathy, retinal vein occlusions and age-related macular degeneration to name prominent examples. Recent studies directly link barrier changes to promotion of disease pathology and degradation of neuronal function. Understanding how these barriers form and how to restore these barriers in disease provides an important point for therapeutic intervention. This review aims to describe the fundamentals of the blood-tissue barriers of the CNS and how the use of transgenic animal models led to our current understanding of the molecular framework of these barriers. The review also highlights examples of targeting barrier properties to protect neuronal function in disease states.
Funder
National Institutes of Health
Research to Prevent Blindness
Publisher
Springer Science and Business Media LLC
Subject
Cellular and Molecular Neuroscience,Developmental Neuroscience,Neurology,General Medicine
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献