Author:
Subedi Mandip,Acharya Indra Prasad
Abstract
AbstractDuring the 2015 Gorkha Earthquake (Mw7.8), extensive soil liquefaction was observed across the Kathmandu Valley. As a densely populated urban settlement, the assessment of liquefaction potential of the valley is crucial especially for ensuring the safety of engineering structures. In this study, we use borehole data including SPT-N values of 410 locations in the valley to assess the susceptibility, hazard, and risk of liquefaction of the valley soil considering three likely-to-recur scenario earthquakes. Some of the existing and frequently used analysis and computation methods are employed for the assessments, and the obtained results are presented in the form of liquefaction hazard maps indicating factor of safety, liquefaction potential index, and probability of ground failure (PG). The assessment results reveal that most of the areas have medium to very high liquefaction susceptibility, and that the central and southern parts of the valley are more susceptible to liquefaction and are at greater risk of liquefaction damage than the northern parts. The assessment outcomes are validated with the field manifestations during the 2015 Gorkha Earthquake. The target SPT-N values (Nimproved) at potentially liquefiable areas are determined using back analysis to ascertain no liquefaction during the aforesaid three scenario earthquakes.
Publisher
Springer Science and Business Media LLC
Subject
Management, Monitoring, Policy and Law,Geotechnical Engineering and Engineering Geology,Environmental Science (miscellaneous),Safety, Risk, Reliability and Quality,Geography, Planning and Development
Reference56 articles.
1. Ansal A, Tönük G (2007) Source and site factors in microzonation. In: Pitilakis KD (ed) Earthquake geotechnical engineering. Springer, pp 73–92
2. Ayele A, Woldearegay K, Meten M (2021) A review on the multi-criteria seismic hazard analysis of Ethiopia: with implications of infrastructural development. Geoenviron Disasters 8(1):1–22. https://doi.org/10.1186/S40677-020-00175-7/METRICS
3. Bansal BK, Nath SK (2011) Seismic microzonation handbook, Geoscience divisions. Ministry of Earth Sciences, Government of India
4. Bolton Seed H, Tokimatsu K, Harder LF, Chung RM (1985) Influence of SPT procedures in soil liquefaction resistance evaluations. J Geotech Eng 111(12):1425–1445. https://doi.org/10.1061/(ASCE)0733-9410(1985)111:12(1425)
5. Boulanger RW, Idriss IM (2014) CPT and SPT based liquefaction triggering procedures. Report No. UCD/CGM.-14, 1
Cited by
24 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献