Buckling Instability of Monopiles in Liquefied Soil via Structural Reliability Assessment Framework

Author:

Bachinilla Brian1ORCID,Siddhpura Milind1ORCID,Evangelista Ana1ORCID,Hammad Ahmed WA2ORCID,Haddad Assed N.12ORCID

Affiliation:

1. Engineering Institute of Technology (EIT), Perth 6005, Australia

2. Programa de Engenharia Ambiental, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-901, Brazil

Abstract

During devastating earthquakes, soil liquefaction has disastrous outcomes on bridge foundations, as mentioned in books and published research. To avoid foundation failure when the surrounding soil is fully liquefied, a bridge’s pile foundation design could be such that the bridge pier is directly resting on the top of a large-diameter monopile instead of the traditional multiple small-diameter piles. This paper discusses the gap of insufficient studies on large-diameter monopiles to support railway bridges subjected to buckling instability and the lack of simplified tools to quickly assess structural reliability. A framework could quickly assess the structural reliability by formulating a simplified reliability analysis. This study focused on pure buckling with shear deformation and reliability assessment to calculate a monopile’s failure probability in fully liquefied soils. In reliability assessment, with the critical pile length (Lcrit) and the unsupported pile length (Luns), the limit state function g(x) = [Lcrit − Luns] thus forms the basis for assessing the safety and reliability of a structure, indicating the state of success or failure. The Lcrit formulation is accomplished with a differential equation. Here, Luns assumes various depths of liquefied soil. The reliability index’s (β) formulation is achieved through the Hasofer–Lind concept and then double-checked through a normal or Gaussian distribution. A case study was conducted using a high-speed railway bridge model from a published research to demonstrate the application of the proposed methodology. To validate the minimum pile diameter for buckling instability when a fully liquefied soil’s thickness reaches the condition that Lcrit = Luns, this study applies the published research of Bhattacharya and Tokimatsu. The validation results show good agreement for 0.85–0.90 m monopile diameters. With a monopile diameter smaller than 0.85 m, the Lcrit = Luns limit was at lesser depths, while with a monopile diameter larger than 0.90 m, the Lcrit = Luns limit was at deeper depths. A load increase notably affected the large-diameter monopiles because the Lcrit movement required a longer range. In fully liquefied soil, buckling will likely happen in piles with a diameter between 0.50 m and 1.60 m because the calculated probability of failure (Pf) value is nearly one. Conversely, buckling instability will likely not happen in monopiles with a diameter of 1.80–2.20 m because the Pf value is zero. Hence, the outcome of this case study suggests that the reliable monopile minimum diameter is 1.80 m for supporting a high-speed railway bridge. Lastly, this paper analyzed the shear deformation effect on large-diameter monopiles, the result of which was 0.30% of Lcrit. Shear deformation makes minimal contributions to large-diameter monopile buckling.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3