Enhancement noise margin and delay time performance of novel punch-through nMOS for single-carrier CMOS

Author:

Lin Jyi-Tsong,Xie Pei-Zhang,Lee Wei-Han

Abstract

AbstractIn this paper, we propose the use of punch-through nMOS (PTnMOS) as an alternative to pMOS in complementary metal oxide semiconductor (CMOS) circuits. According to the TCAD simulation results, PTnMOS exhibit sub-threshold characteristics similar to those of pMOS and can be formed by simply changing the doping concentration of the source and drain. Without the need for sizing, which solves the area occupation problem caused by the need to increase the width of pMOS due to insufficient hole mobility. In addition, we compose a PTnMOS and nMOS without sizing to form a single-carrier CMOS in which only electrons are transmitted, and We extract its performance for comparison with conventional CMOS (Wp/Wn = 1). The results indicate that single-carrier CMOS has symmetric noise margin and 29% faster delay time compared to conventional CMOS (Wp/Wn = 1). If III–V or II–VI group materials could be applied to single-carrier CMOS, not only could costs be reduced and wafer area occupancy minimized, but also significant improvements in the performance and bandwidth application of microwave circuits could be achieved.

Funder

Ministry of Science and Technology, Taiwan

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3