Author:
Nguyen Thi My Huyen,Garner Sean M.,Bark Chung Wung
Abstract
AbstractUltraviolet-C (UVC) photodetector has appealed to a numerous number of research owing to its manifold applications in wireless communication, flame monitoring, and medicine. However, in addition to superior performance and high stability of recent studies, scalability and production cost are important factors for commercialization and practical implementation. In this study, a halide perovskite-based UVC photodetector was fabricated using spin-coating process and low-temperature annealing. Corning® Willow® Glass was selected as the substrate for the bottom-illuminated device due to its flexibility and exceptional optical transmission (approximately 60%) in the deep-UV region. The device had a vertical structure with a large active area (1 cm2) owing to the judicious utilization of electrodes. Under bent state with a curvature radius of 25 mm, the as-fabricated device exhibited high response and repeatability with an on/off ratio of 9.57 × 103, a fast response speed of 45/46 ms (rise/fall times) at zero bias under the illumination of a 254-nm UV lamp. The results are based on a flexible and lightweight photodetector without the utilization of notable metal electrodes.
Funder
National Research Foundation of Korea
Publisher
Springer Science and Business Media LLC
Subject
Condensed Matter Physics,General Materials Science
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献