Deep-Ultraviolet Transparent Electrode Design for High-Performance and Self-Powered Perovskite Photodetector

Author:

Nguyen Thi My Huyen1,Tran Manh Hoang1,Bark Chung Wung1ORCID

Affiliation:

1. Department of Electrical Engineering, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si 13120, Gyeonggi-do, Republic of Korea

Abstract

In this study, a highly crystalline and transparent indium-tin-oxide (ITO) thin film was prepared on a quartz substrate via RF sputtering to fabricate an efficient bottom-to-top illuminated electrode for an ultraviolet C (UVC) photodetector. Accordingly, the 26.6 nm thick ITO thin film, which was deposited using the sputtering method followed by post-annealing treatment, exhibited good transparency to deep-UV spectra (67% at a wavelength of 254 nm), along with high electrical conductivity (11.3 S/cm). Under 254 nm UVC illumination, the lead-halide-perovskite-based photodetector developed on the prepared ITO electrode in a vertical structure exhibited an excellent on/off ratio of 1.05 × 104, a superb responsivity of 250.98 mA/W, and a high specific detectivity of 4.71 × 1012 Jones without external energy consumption. This study indicates that post-annealed ITO ultrathin films can be used as electrodes that satisfy both the electrical conductivity and deep-UV transparency requirements for high-performance bottom-illuminated optoelectronic devices, particularly for use in UVC photodetectors.

Funder

National Research Foundation of Korea (NRF) funded by the Ministry of Science and ICT

Korea Basic Science Institute grant funded by the Ministry of Education

Korea Institute of Energy Technology Evaluation and Planning

Ministry of Trade, Industry, and Energy (MOTIE) of the Republic of Korea

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3