Abstract
AbstractIn this paper, we computationally study electrical characteristics for gate-all-around fin field effect transistors (GAA FinFETs) and negative capacitance GAA FinFETs (NC-GAA FinFETs) for sub-3-nm technological nodes. For the devices with the fin height of 55 nm, the on-state current increases (about 33% improvement) and the off-state current decreases (about 73% suppression) due to the NC effect. NC-GAA FinFETs have larger standard deviation of threshold voltage induced by the workfunction fluctuation (WKF) for both N-/P-type devices than those of GAA FinFETs. It is attributed to the variation of polarization in the different position of the ferroelectric layer. Notably, the inverter of NC-GAA FinFETs has larger noise margin and shorter delay time, compared with the inverter of GAA FinFETs; however, the characteristics of inverter of NC-GAA FinFETs suffer larger variability induced by the WKF.
Funder
Ministry of Science and Technology, Taiwan
Publisher
Springer Science and Business Media LLC
Subject
Condensed Matter Physics,General Materials Science
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献