Review of Recent Progress on Vertical GaN-Based PN Diodes

Author:

Pu Taofei,Younis Usman,Chiu Hsien-Chin,Xu Ke,Kuo Hao-Chung,Liu XinkeORCID

Abstract

AbstractAs a representative wide bandgap semiconductor material, gallium nitride (GaN) has attracted increasing attention because of its superior material properties (e.g., high electron mobility, high electron saturation velocity, and critical electric field). Vertical GaN devices have been investigated, are regarded as one of the most promising candidates for power electronics application, and are characterized by the capacity for high voltage, high current, and high breakdown voltage. Among those devices, vertical GaN-based PN junction diode (PND) has been considerably investigated and shows great performance progress on the basis of high epitaxy quality and device structure design. However, its device epitaxy quality requires further improvement. In terms of device electric performance, the electrical field crowding effect at the device edge is an urgent issue, which results in premature breakdown and limits the releasing superiorities of the GaN material, but is currently alleviated by edge termination. This review emphasizes the advances in material epitaxial growth and edge terminal techniques, followed by the exploration of the current GaN developments and potential advantages over silicon carbon (SiC) for materials and devices, the differences between GaN Schottky barrier diodes (SBDs) and PNDs as regards mechanisms and features, and the advantages of vertical devices over their lateral counterparts. Then, the review provides an outlook and reveals the design trend of vertical GaN PND utilized for a power system, including with an inchoate vertical GaN PND.

Funder

Key Research and Development Program of Guangdong Province

National Natural Science Foundation of China

Science and Technology Foundation of Shenzhen

Natural Science Foundation of China

Science and Technology Program of Ningbo, China

Publisher

Springer Science and Business Media LLC

Subject

Condensed Matter Physics,General Materials Science

Cited by 34 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3