Author:
Udaya Mohanan Kannan,Cho Seongjae,Park Byung-Gook
Abstract
AbstractProcessing-in-memory (PIM) is emerging as a new computing paradigm to replace the existing von Neumann computer architecture for data-intensive processing. For the higher end-user mobility, low-power operation capability is more increasingly required and components need to be renovated to make a way out of the conventional software-driven artificial intelligence. In this work, we investigate the hardware performances of PIM architecture that can be presumably constructed by resistive-switching random-access memory (ReRAM) synapse fabricated with a relatively larger thermal budget in the full Si processing compatibility. By introducing a medium-temperature oxidation in which the sputtered Ge atoms are oxidized at a relatively higher temperature compared with the ReRAM devices fabricated by physical vapor deposition at room temperature, higher device reliability has been acquired. Based on the empirically obtained device parameters, a PIM architecture has been conceived and a system-level evaluations have been performed in this work. Considerations include the cycle-to-cycle variation in the GeOx ReRAM synapse, analog-to-digital converter resolution, synaptic array size, and interconnect latency for the system-level evaluation with the Canadian Institute for Advance Research-10 dataset. A fully Si processing-compatible and robust ReRAM synapse and its applicability for PIM are demonstrated.
Graphical Abstract
Funder
Ministry of Education, Science and Technology
Publisher
Springer Science and Business Media LLC
Subject
Condensed Matter Physics,General Materials Science
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献