Rectifying Performance of Heterojunction Based on α-Borophene Nanoribbons with Edge Passivation

Author:

Yu Guoliang,Ding Wence,Xiao Xianbo,Li Xiaobo,Zhou GuanghuiORCID

Abstract

AbstractWe propose a planar model heterojunction based on α-borophene nanoribbons and study its electronic transport properties. We respectively consider three types of heterojunctions. Each type consists of two zigzag-edge α-borophene nanoribbons (Z αBNR), one is metallic with unpassivated or passivated edges by a hydrogen atom (1H-Z αBNR) and the other is semiconducting with the edge passivated by two hydrogen atoms (2H-Z αBNR) or a single nitrogen atom (N-Z αBNR). Using the first-principles calculations combined with the nonequilibrium Green’s function, we observe that the rectifying performance depends strongly on the atomic structural details of a junction. Specifically, the rectification ratio of the junction is almost unchanged when its left metallic ribbon changes from ZBNR to 1H-Z αBNR. However, its ratio increases from 120 to 240 when the right semiconducting one varies from 2H-Z αBNR to N-Z αBNR. This rectification effect can be explained microscopically by the matching degree the electronic bands between two parts of a junction. Our findings imply that the borophene-based heterojunctions may have potential applications in rectification nano-devices.

Publisher

Springer Science and Business Media LLC

Subject

Condensed Matter Physics,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3