Nanosheet integration of induced tunnel field-effect transistor with lower cost and lower power

Author:

Lin Jyi-Tsong,Kuo Chia-Yo

Abstract

AbstractNanosheet transistors are poised to become the preferred choice for the next generation of smaller-sized devices in the future. To address the future demand for high-performance and low-power computing applications, this study proposes a nanosheet structure with a vertically stacked design, featuring a high ION/IOFF ratio. This Nanosheet design is combined with an induced tunnel field-effect transistor. By utilizing SiGe with a carrier mobility three times that of Si and employing a line tunneling mechanism, the research successfully achieves superior Band to Band characteristics, resulting in improved switching behavior and a lower Subthreshold Swing (SS). Comparative studies were conducted on three TFET types: Nanosheet PIN TFET, Nanosheet Schottky iTFET, and Fin iTFET. Results show that the Nanosheet PIN TFET has a higher ION/IOFF ratio but poorer SSavg values at 47.63 mV/dec compared to the others. However, with a SiGe Body thickness of 3 nm, both Nanosheet iTFET and Fin iTFET exhibit higher ION/IOFF ratios and superior SSavg values at 17.64 mV/dec. These findings suggest the potential of Nanosheet iTFET and Fin iTFET for low-power, lower thermal budgets, and fast-switching applications.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3