Alternative Strategy to Reduce Surface Recombination for InGaN/GaN Micro-light-Emitting Diodes—Thinning the Quantum Barriers to Manage the Current Spreading

Author:

Chang Le,Yeh Yen-Wei,Hang Sheng,Tian Kangkai,Kou Jianquan,Bi Wengang,Zhang Yonghui,Zhang Zi-HuiORCID,Liu Zhaojun,Kuo Hao-Chung

Abstract

AbstractOwing to high surface-to-volume ratio, InGaN-based micro-light-emitting diodes (μLEDs) strongly suffer from surface recombination that is induced by sidewall defects. Moreover, as the chip size decreases, the current spreading will be correspondingly enhanced, which therefore further limits the carrier injection and the external quantum efficiency (EQE). In this work, we suggest reducing the nonradiative recombination rate at sidewall defects by managing the current spreading effect. For that purpose, we properly reduce the vertical resistivity by decreasing the quantum barrier thickness so that the current is less horizontally spreaded to sidewall defects. As a result, much fewer carriers are consumed in the way of surface nonradiative recombination. Our calculated results demonstrate that the suppressed surface nonradiative recombination can better favor the hole injection efficiency. We also fabricate the μLEDs that are grown on Si substrates, and the measured results are consistent with the numerical calculations, such that the EQE for the proposed μLEDs with properly thin quantum barriers can be enhanced, thanks to the less current spreading effect and the decreased surface nonradiative recombination.

Funder

Joint research project for Tunghsu Group and Hebei University of Technology

Natural Science Foundation of Hebei Province

Program for Top 100 Innovative Talents in Colleges and Universities of Hebei Province

Program for 100-Talent-Plan of Hebei Province

Suzhou Institute of Nanotechnology, Chinese Academy of Sciences

Publisher

Springer Science and Business Media LLC

Subject

Condensed Matter Physics,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3