Abstract
AbstractHigh concentration ozone can damage greatly to the respiratory, cardiovascular systems, and fertility of people, and catalytic decomposition is an important strategy to reduce its harm. However, it remains a challenge to develop efficient ozone decomposition catalysts with high efficiency. In this study, p- and n-type silicon nanowires (Si NWs) are fabricated by wet chemical etching method and are firstly applied to catalytic decompose ozone at room temperature. The p-type Si NWs exhibit 90% ozone (20 ppm O3/air) decomposition efficiency with great stability, which is much better than that of n-type Si NWs (50%) with same crystal orientation, similar diameter and specific surface area. The catalytic property difference is mainly attributed to the more delocalization holes in the p-type Si NWs, which can accelerate the desorption of ozone decomposition intermediates (i.e., adsorbed oxygen species).
Funder
National Key R&D Program of China
Natural Science Foundation of Shandong Province, China
National Natural Science Foundation of China
Taishan Scholar Program of Shandong Province, China
Publisher
Springer Science and Business Media LLC
Subject
Condensed Matter Physics,General Materials Science
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献