Author:
Garcia Sanchez Rosa,Karhumaa Kaisa,Fonseca César,Sànchez Nogué Violeta,Almeida João RM,Larsson Christer U,Bengtsson Oskar,Bettiga Maurizio,Hahn-Hägerdal Bärbel,Gorwa-Grauslund Marie F
Abstract
Abstract
Background
Cost-effective fermentation of lignocellulosic hydrolysate to ethanol by Saccharomyces cerevisiae requires efficient mixed sugar utilization. Notably, the rate and yield of xylose and arabinose co-fermentation to ethanol must be enhanced.
Results
Evolutionary engineering was used to improve the simultaneous conversion of xylose and arabinose to ethanol in a recombinant industrial Saccharomyces cerevisiae strain carrying the heterologous genes for xylose and arabinose utilization pathways integrated in the genome. The evolved strain TMB3130 displayed an increased consumption rate of xylose and arabinose under aerobic and anaerobic conditions. Improved anaerobic ethanol production was achieved at the expense of xylitol and glycerol but arabinose was almost stoichiometrically converted to arabitol. Further characterization of the strain indicated that the selection pressure during prolonged continuous culture in xylose and arabinose medium resulted in the improved transport of xylose and arabinose as well as increased levels of the enzymes from the introduced fungal xylose pathway. No mutation was found in any of the genes from the pentose converting pathways.
Conclusion
To the best of our knowledge, this is the first report that characterizes the molecular mechanisms for improved mixed-pentose utilization obtained by evolutionary engineering of a recombinant S. cerevisiae strain. Increased transport of pentoses and increased activities of xylose converting enzymes contributed to the improved phenotype.
Publisher
Springer Science and Business Media LLC
Subject
Management, Monitoring, Policy and Law,General Energy,Renewable Energy, Sustainability and the Environment,Applied Microbiology and Biotechnology,Biotechnology
Reference32 articles.
1. Hayn MSW, Klinger R, Steinmüller H, Sinner M, Esterbauer H: Basic research and pilot studies on the enzymatic conversion of lignocellulosics. In Bioconversion of Forest and Agricultural Plant Residues. Edited by: Saddler JN. Wallingford: CAB International; 1993:33-72.
2. Hahn-Hägerdal B, Karhumaa K, Jeppsson M, Gorwa-Grauslund MF: Metabolic engineering for pentose utilization in Saccharomyces cerevisiae . In Biofuels. Volume 108. Berlin/Heidelberg: Springer; 2007:147-177. full_text
3. Matsushika A, Inoue H, Kodaki T, Sawayama S: Ethanol production from xylose in engineered Saccharomyces cerevisiae strains: current state and perspectives. Applied Microbiology and Biotechnology 2009,84(1):37-53. 10.1007/s00253-009-2101-x
4. Karhumaa K, Garcia Sanchez R, Hahn-Hägerdal B, Gorwa-Grauslund MF: Comparison of the xylose reductase-xylitol dehydrogenase and the xylose isomerase pathways for xylose fermentation by recombinant Saccharomyces cerevisiae . Microbial Cell Factories 2007, 6: 5. 10.1186/1475-2859-6-5
5. Becker J, Boles E: A modified Saccharomyces cerevisiae strain that consumes L-Arabinose and produces ethanol. Appl Environ Microb 2003,69(7):4144-4150. 10.1128/AEM.69.7.4144-4150.2003
Cited by
116 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献