Author:
Roche Christine M,Dibble Clare J,Stickel Jonathan J
Abstract
Abstract
Background
Screening new lignocellulosic biomass pretreatments and advanced enzyme systems at process relevant conditions is a key factor in the development of economically viable lignocellulosic ethanol. Shake flasks, the reaction vessel commonly used for screening enzymatic saccharifications of cellulosic biomass, do not provide adequate mixing at high-solids concentrations when shaking is not supplemented with hand mixing.
Results
We identified roller bottle reactors (RBRs) as laboratory-scale reaction vessels that can provide adequate mixing for enzymatic saccharifications at high-solids biomass loadings without any additional hand mixing. Using the RBRs, we developed a method for screening both pretreated biomass and enzyme systems at process-relevant conditions. RBRs were shown to be scalable between 125 mL and 2 L. Results from enzymatic saccharifications of five biomass pretreatments of different severities and two enzyme preparations suggest that this system will work well for a variety of biomass substrates and enzyme systems. A study of intermittent mixing regimes suggests that mass transfer limitations of enzymatic saccharifications at high-solids loadings are significant but can be mitigated with a relatively low amount of mixing input.
Conclusion
Effective initial mixing to promote good enzyme distribution and continued, but not necessarily continuous, mixing is necessary in order to facilitate high biomass conversion rates. The simplicity and robustness of the bench-scale RBR system, combined with its ability to accommodate numerous reaction vessels, will be useful in screening new biomass pretreatments and advanced enzyme systems at high-solids loadings.
Publisher
Springer Science and Business Media LLC
Subject
Management, Monitoring, Policy and Law,General Energy,Renewable Energy, Sustainability and the Environment,Applied Microbiology and Biotechnology,Biotechnology
Reference21 articles.
1. Greene N, FE C, Dale B, Jackson M, K J, Jin H, Larson E, Laser M, Lynd L, MacKenzie D: Growing Energy: How Biofuels Can Help End America's Oil Dependence. Technical report. National Resources Defense Council 2004. [http://www.nrdc.org/air/energy/biofuels/biofuels.pdf]
2. Jørgensen H, Kristensen JB, Felby C: Enzymatic conversion of lignocellulose into fermentable sugars: challenges and opportunities. Biofuels, Bioprod Biorefin 2007,1(2):119-134. 10.1002/bbb.4
3. Wyman CE: BIOMASS ETHANOL: Technical Progress, Opportunities, and Commercial Challenges. Annu Rev Energ Env 1999, 24: 189. 10.1146/annurev.energy.24.1.189
4. Mohagheghi A, Tucker M, Grohmann K, Wyman C: High Solids Simultaneous Saccharification And Fermentation Of Pretreated Wheat Straw To Ethanol. Appl Biochem Biotechnol 1992,33(2):67-81. 10.1007/BF02950778
5. Selig MJ, Knoshaug EP, Adney WS, Himmel ME, Decker SR: Synergistic enhancement of cellobiohydrolase performance on pretreated corn stover by addition of xylanase and esterase activities. BioresourTechnol 2008,99(11):4997-5005.
Cited by
109 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献