Affiliation:
1. Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire 03755,
2. BC International, Dedham, Massachusetts 02026;
Abstract
▪ Abstract Ethanol made from lignocellulosic biomass sources, such as agricultural and forestry residues and herbaceous and woody crops, provides unique environmental, economic, and strategic benefits. Through sustained research funding, primarily by the U.S. Department of Energy, the estimated cost of biomass ethanol production has dropped from ∼$4.63/gallon in 1980 to ∼$1.22/gallon today, and it is now potentially competitive for blending with gasoline. Advances in pretreatment by acid-catalyzed hemicellulose hydrolysis and enzymes for cellulose breakdown coupled with recent development of genetically engineered bacteria that ferment all five sugars in biomass to ethanol at high yields have been the key to reducing costs. However, through continued advances in accessing the cellulose and hemicellulose fractions, the cost of biomass ethanol can be reduced to the point at which it is competitive as a pure fuel without subsidies. A major challenge to realizing the great benefits of biomass ethanol remains to substantially reduce the risk of commercializing first-of-a-kind technology, and greater emphasis on developing a fundamental understanding of the technology for biomass conversion to ethanol would reduce application costs and accelerate commercialization. Teaming of experts to cooperatively research key processing steps would be a particularly powerful and effective approach to meeting these needs.
Subject
Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Environmental Engineering
Cited by
459 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献